Halla el límite de la integral
$$ \lim_{x \to +\infty} \frac{1}{x} \int_1^x \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) \, dt, $$
RESPUESTA
To evaluate the limit
$$ \lim_{x \to +\infty} \frac{1}{x} \int_1^x \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) \, dt, $$
we begin by analyzing the behavior of the integrand as $ t \to \infty $.
# **Step 1: Simplify the Argument of the Tangent**
The argument of the tangent function is:
$$ \frac{\pi t}{2t + 1}.$$
Dividing numerator and denominator by $ t $, we get:
$$ \frac{\pi t}{2t + 1} = \frac{\pi}{2 + \frac{1}{t}}. $$
As $ t \to \infty $, this tends to:
$$ \frac{\pi}{2}. $$
So the argument of the tangent function approaches $ \frac{\pi}{2} $, where the tangent function diverges. However, we can approximate the behavior of the tangent near $ \frac{\pi}{2} $ using the identity:
$$ \tan\left(\frac{\pi}{2} - \varepsilon\right) = \cot(\varepsilon) \approx \frac{1}{\varepsilon}, \quad \text{for small } \varepsilon. $$
### **Step 2: Approximate the Tangent Function**
Let us define:
$$ \varepsilon = \frac{\pi}{2} - \frac{\pi t}{2t + 1} = \frac{\pi}{2(2t + 1)}. $$
Then, $$ \tan\left(\frac{\pi t}{2t + 1}\right) = \tan\left(\frac{\pi}{2} - \varepsilon\right) \approx \frac{1}{\varepsilon} = \frac{2(2t + 1)}{\pi}. $$
Thus, the integrand becomes:
$$ \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) \approx \frac{1}{t} \cdot \frac{2(2t + 1)}{\pi} = \frac{4t + 2}{\pi t} = \frac{4}{\pi} + \frac{2}{\pi t}. $$
As $ t \to \infty $, the second term becomes negligible, and the integrand approaches:
$$ \frac{4}{\pi}.$$
# **Step 3: Estimate the Integral**
Since the integrand approaches a constant $ \frac{4}{\pi} $ as $ t \to \infty $, the integral from 1 to $ x $ behaves approximately like:
$$ \int_1^x \frac{4}{\pi} \, dt = \frac{4}{\pi}(x - 1). $$
Therefore, the original expression becomes:
$$ \frac{1}{x} \int_1^x \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) dt \approx \frac{1}{x} \cdot \frac{4}{\pi}(x - 1) = \frac{4}{\pi} \cdot \left(1 - \frac{1}{x}\right). $$
As $ x \to \infty $, the term $ \frac{1}{x} \to 0 $, and the expression converges to:
$$ \frac{4}{\pi}. $$
## **Step 4: Confirm with L’Hôpital’s Rule**
We can also apply L’Hôpital’s Rule to the limit:
$$ \lim_{x \to \infty} \frac{\int_1^x \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) dt}{x}. $$
This is an indeterminate form $ \frac{\infty}{\infty} $, so we differentiate numerator and denominator:
- The derivative of the numerator is the integrand evaluated at $ x $:
$$ \frac{1}{x} \tan\left(\frac{\pi x}{2x + 1}\right), $$
- The derivative of the denominator is 1.
So the limit becomes: $$ \lim_{x \to \infty} \frac{1}{x} \tan\left(\frac{\pi x}{2x + 1}\right). $$
As shown earlier, this expression approaches: $$ \frac{4}{\pi}. $$
# **Conclusion**
Both the direct approximation and L’Hôpital’s Rule confirm that the limit is:
$$ \boxed{\dfrac{4}{\pi}} $$
otra respuesta
Para resolver el límite:
analizamos el comportamiento del integrando cuando .
Paso 1: Simplificar el argumento de la tangente
El argumento de es . Dividiendo numerador y denominador por :
Paso 2: Aproximar
Usando la aproximación para :
Paso 3: Comportamiento del integrando
El integrando se aproxima como:
Paso 4: Evaluar la integral
Integramos la aproximación constante:
Paso 5: Calcular el límite
Dividimos por y tomamos el límite:
Conclusión
El límite es:
Otra respuesta
To solve the limit problem:
we analyze the integral and its behavior as approaches infinity. The integrand is oscillatory with period 1 and has singularities at for integers . However, the integral can be interpreted in the principal value sense to handle these singularities.
Key steps:
Periodicity and Oscillatory Nature: The function is periodic with period 1 and oscillates between and with singularities at . The integrand decays as due to the denominator.
Principal Value Integral: The integral over each interval around the singularities is considered in the principal value sense, leading to cancellation of the divergent parts.
Integration by Parts: Using integration by parts, we show that the boundary terms and the remaining integral term both tend to zero when divided by .
Riemann-Lebesgue Lemma: The oscillatory nature of and the decay of imply that the integral averages out to zero over large intervals.
After detailed analysis, we conclude that the integral grows slower than , leading to the limit:
RESPUESTA
To evaluate the limit
we begin by analyzing the behavior of the integrand as
.Step 1: Simplify the Argument of the Tangent
The argument of the tangent function is:
Dividing numerator and denominator by
, we get:As
, this tends to:So the argument of the tangent function approaches
, where the tangent function diverges. However, we can approximate the behavior of the tangent near using the identity:Step 2: Approximate the Tangent Function
Let us define:
Then,
Thus, the integrand becomes:
As
, the second term becomes negligible, and the integrand approaches:Step 3: Estimate the Integral
Since the integrand approaches a constant
as , the integral from 1 to behaves approximately like:Therefore, the original expression becomes:
As
, the term , and the expression converges to:Step 4: Confirm with L’Hôpital’s Rule
We can also apply L’Hôpital’s Rule to the limit:
This is an indeterminate form
, so we differentiate numerator and denominator:The derivative of the numerator is the integrand evaluated at
:The derivative of the denominator is 1.
So the limit becomes:
As shown earlier, this expression approaches:
Conclusion
Both the direct approximation and L’Hôpital’s Rule confirm that the limit is:
Comentarios
Publicar un comentario
Los comentarios son bienvenidos siempre que sean respetuosos y corteses y traten del asunto de la entrada.
Dirige un correo a martinjaime80@hotmail.com informando de que deseas publicar un comentario