Halla el límite de la integral

$$ \lim_{x \to +\infty} \frac{1}{x} \int_1^x \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) \, dt, $$

RESPUESTA

To evaluate the limit


$$ \lim_{x \to +\infty} \frac{1}{x} \int_1^x \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) \, dt, $$

we begin by analyzing the behavior of the integrand as $ t \to \infty $.

# **Step 1: Simplify the Argument of the Tangent**

The argument of the tangent function is:

$$ \frac{\pi t}{2t + 1}.$$

Dividing numerator and denominator by $ t $, we get:

$$ \frac{\pi t}{2t + 1} = \frac{\pi}{2 + \frac{1}{t}}. $$

As $ t \to \infty $, this tends to:

$$ \frac{\pi}{2}. $$

So the argument of the tangent function approaches $ \frac{\pi}{2} $, where the tangent function diverges. However, we can approximate the behavior of the tangent near $ \frac{\pi}{2} $ using the identity:

$$ \tan\left(\frac{\pi}{2} - \varepsilon\right) = \cot(\varepsilon) \approx \frac{1}{\varepsilon}, \quad \text{for small } \varepsilon. $$

### **Step 2: Approximate the Tangent Function**

Let us define:

$$ \varepsilon = \frac{\pi}{2} - \frac{\pi t}{2t + 1} = \frac{\pi}{2(2t + 1)}. $$

Then,  $$ \tan\left(\frac{\pi t}{2t + 1}\right) = \tan\left(\frac{\pi}{2} - \varepsilon\right) \approx \frac{1}{\varepsilon} = \frac{2(2t + 1)}{\pi}. $$

Thus, the integrand becomes:

$$ \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) \approx \frac{1}{t} \cdot \frac{2(2t + 1)}{\pi} = \frac{4t + 2}{\pi t} = \frac{4}{\pi} + \frac{2}{\pi t}. $$

As $ t \to \infty $, the second term becomes negligible, and the integrand approaches:

$$ \frac{4}{\pi}.$$

# **Step 3: Estimate the Integral**

Since the integrand approaches a constant $ \frac{4}{\pi} $ as $ t \to \infty $, the integral from 1 to $ x $ behaves approximately like:

$$ \int_1^x \frac{4}{\pi} \, dt = \frac{4}{\pi}(x - 1). $$

Therefore, the original expression becomes:

$$ \frac{1}{x} \int_1^x \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) dt \approx \frac{1}{x} \cdot \frac{4}{\pi}(x - 1) = \frac{4}{\pi} \cdot \left(1 - \frac{1}{x}\right). $$

As $ x \to \infty $, the term $ \frac{1}{x} \to 0 $, and the expression converges to:

$$ \frac{4}{\pi}. $$

## **Step 4: Confirm with L’Hôpital’s Rule**

We can also apply L’Hôpital’s Rule to the limit:

$$ \lim_{x \to \infty} \frac{\int_1^x \frac{1}{t} \tan\left(\frac{\pi t}{2t + 1}\right) dt}{x}. $$

This is an indeterminate form $ \frac{\infty}{\infty} $, so we differentiate numerator and denominator:

- The derivative of the numerator is the integrand evaluated at $ x $:  

  $$   \frac{1}{x} \tan\left(\frac{\pi x}{2x + 1}\right),   $$

- The derivative of the denominator is 1.

So the limit becomes:    $$ \lim_{x \to \infty} \frac{1}{x} \tan\left(\frac{\pi x}{2x + 1}\right). $$

As shown earlier, this expression approaches:    $$ \frac{4}{\pi}. $$

# **Conclusion**

Both the direct approximation and L’Hôpital’s Rule confirm that the limit is:

$$  \boxed{\dfrac{4}{\pi}} $$

otra respuesta

Para resolver el límite:

limx+1x1x1ttan(πt2t+1)dt,

analizamos el comportamiento del integrando cuando t.

Paso 1: Simplificar el argumento de la tangente

El argumento de tan es πt2t+1. Dividiendo numerador y denominador por t:

πt2t+1=π2+1tπ2π4tpara t.

Paso 2: Aproximar tan(πt2t+1)

Usando la aproximación tan(π2ϵ)cot(ϵ) para ϵ0:

tan(π2π4t)cot(π4t)4tπ.

Paso 3: Comportamiento del integrando

El integrando se aproxima como:

1ttan(πt2t+1)1t4tπ=4π.

Paso 4: Evaluar la integral

Integramos la aproximación constante:

1x4πdt=4π(x1).

Paso 5: Calcular el límite

Dividimos por x y tomamos el límite:

limx+1x4π(x1)=4π.

Conclusión

El límite es:

4π



Otra respuesta

To solve the limit problem:

limx+1xx11xtan(πt)2t+1dt

we analyze the integral and its behavior as x approaches infinity. The integrand tan(πt)/(2t+1) is oscillatory with period 1 and has singularities at t=n+1/2 for integers n. However, the integral can be interpreted in the principal value sense to handle these singularities.

Key steps:

  1. Periodicity and Oscillatory Nature: The function tan(πt) is periodic with period 1 and oscillates between  and + with singularities at t=n+1/2. The integrand tan(πt)/(2t+1) decays as 1/t due to the denominator.

  2. Principal Value Integral: The integral over each interval around the singularities is considered in the principal value sense, leading to cancellation of the divergent parts.

  3. Integration by Parts: Using integration by parts, we show that the boundary terms and the remaining integral term both tend to zero when divided by x.

  4. Riemann-Lebesgue Lemma: The oscillatory nature of tan(πt) and the decay of 1/(2t+1) imply that the integral averages out to zero over large intervals.

After detailed analysis, we conclude that the integral x11xtan(πt)2t+1dt grows slower than x, leading to the limit:

limx+1xx11xtan(πt)2t+1dt=00

RESPUESTA

To evaluate the limit

we begin by analyzing the behavior of the integrand as .


Step 1: Simplify the Argument of the Tangent

The argument of the tangent function is:

Dividing numerator and denominator by , we get:

As , this tends to:

So the argument of the tangent function approaches , where the tangent function diverges. However, we can approximate the behavior of the tangent near using the identity:


Step 2: Approximate the Tangent Function

Let us define:

Then,

Thus, the integrand becomes:

As , the second term becomes negligible, and the integrand approaches:


Step 3: Estimate the Integral

Since the integrand approaches a constant as , the integral from 1 to behaves approximately like:

Therefore, the original expression becomes:

As , the term , and the expression converges to:


Step 4: Confirm with L’Hôpital’s Rule

We can also apply L’Hôpital’s Rule to the limit:

This is an indeterminate form , so we differentiate numerator and denominator:

  • The derivative of the numerator is the integrand evaluated at :

  • The derivative of the denominator is 1.

So the limit becomes:

As shown earlier, this expression approaches:


Conclusion

Both the direct approximation and L’Hôpital’s Rule confirm that the limit is:

Comentarios

Entradas populares de este blog